ALGORITHMS

CHRISTOPHE CROUX

Make an impack

;
H
%

European Journal of Operational Research

&% Volume 297, Issue 2, 1 March 2022, Pages 782-794

ELSEVIER

L

Interfaces with Other Disciplines

Sparse regression for large data sets with
outliers

Example: from a data set of 12800 hotels, we estimate:

Hotel Price = -15.7 — 14.3 Distance +22.8 Stars + 176 Rating

H nfidentiel
EBUSINESS SCHOOL Confidentie

Combine the shooting algorithm used for sparse regression with an additional
weighting step to give less weight to outliers.

5
A) ! H Confidentiel

paper.pdf

2. OUTLINE OF ALGORITHM

3. Algorithmic details

We subsequently discuss the computation of the regression
weights wy; (Section 3.1), the robustified version of the response

jf“}fj:' (Section 3.2), the choice of starting value (Section 3.3), the se-
lection of the sparsity parameter A (Section 3.4), the standardiza-
tion of the predictors (Section 2.5), and the choice and interplay of
robustness constants (Section 3.6). Pseudo-code of the algorithm
and the full computer code for the sparse shooting 5 is available
as Supplementary Material.!

The algorithm requires calculation of a robust measure of scple
of the residuals. We use the M-estimator of residual scale (eg.,
Maronna et al, 2018, page 34), combining robustness to outliers
with a high statistical efficiency. The latter means that in absence
of outliers the mean squared estimation error is not much higher
than when using the standard deviation (assuming normality of
the errors).

3.1. Regression weights

The cell-specific weights in Eqg. (3) ensure that one obtains cell-
wise robust regression estimates. These regression weights are a
funcrion of the residuals rI!J} :j-"!.‘-":' — Bxij. where 8; results from
the previous iteration of the shooting loop. A popular choice of
weight function is Tukey's biweight, visualized in Fig. 2. The weight
funcrion is applied to the residuals standardized by 5;, a robust
measure of scale of these residuals. One has

- la —(%'f;'—:}ﬁ}z ir—f_{:;'-_:c

(4)

0 otherwise.

Regression outliers give rise to large standardized residual values
and are, in turn, downweighted. We take ¢ = 3.420, yielding a good
trade-off berween statistical efficiency and robustness to outliers
of the corresponding regression estimator. More specifically, this

choice of c yields an efficiency of 85% (for normally distributed er
ror terms) and a breakdown point® of 20%, see Rousseeuw and
Yohai (1984). Note that the M-estimator of scale uses the same
weight function and tuning constant.

3.2. Robusrtified response
The new response _1-'1." in the simple regression Eq. (2) filters
out the effect of the predictor variables with index different from
Jj- To prevent outliers in the cells x;;, to propagate, we need to use
a robustified response

ﬁj' =M¥i— waﬁk
ke

where a “cleaned” predictor value X is used instead of the ob-
served cell value x;. The “cleaned” cells are

i
X |I‘T =3
Xy otherwise,

Xg = (3)
where ¥; is an expecred cell value. Hence, if the standardized
residual is not flagged as outlying, the cleaned cell equals the
observed cell value. Otherwise, the cleaned cell value equals the
expected cell value. The expected cell wvalues are obtained us-
ing a simplified version of the robust data imputation method of
Rousseeuw and Van Den Bossche (2018), outlined below. This cut-
off value 3 in (5) ensures that, given a regression model with nor-
mally distributed errors, less than 0.3% of the observations are ex-
pected to be mislabelled as outliers.

Robust data imputation We use a simplified version of the ro-
bust data imputation method of Rousseeuw and Van Den Bossche
(2018 which contains the core of their procedure and works well
for our purpose. The idea is to consider outlying values in the data
matrix as missing values, that are to be replaced by so called ex-
pected cell values. Consider predictor variable k, with values in col-
umn k of the data matrix. First, we obtain its most robustly corre-
lated wvariable, say variable j. Then we regress predictor variable k

Confidentiel

3. IMPLEMENTATION

sparseshootS.R

sparseshootings <- function(x, vy, k = 3.428, maxIteration = 188, tol = 18"-2,
betakst = NULL, intercept = NULL, scaleVar = NULL, xhat = NULL, xtilde = NULL,
maxituniv = 1, maxitscale = 188, wvalue = 3, shoot order = "default”,
nlambda = 188, post = TRUE, lambda grid = NULL, kpred = NULL, predset = NULL){

Function to compute sparse shooting S #HHH

Example:

sparseshootingS(x=features,y=price,data=hotels)

E B H Confidentiel

The idea of the algorithm may be implemented in an almost infinite number of ways.
Implementations differ in

¢ Speed of execution

¢ Stability

¢ User friendliness / documentation

s .

-"'\-\\
_A) ! H Confidentiel

TOY EXAMPLE

¢ \We need an algorithm for:

divide a number by 2 if it is even and double the number if it is odd.

Idea:

Divide the number by two.
If the remainder of this division is zero, then the number is even.

E B H Confidentiel

Implementation in Python:

def myfunction{x):
test=x/2-round{(x/2)
if (test == @):

result= x/2
else:

result= 2¥x
return{result)

@ 8 H Confidentiel

Implementation in Python:

def myfunction{x):
test=x/2-round{(x/2)
if (test == @):

result= x/2
else:

result= 2¥x
return{result)

@ 8 H Confidentiel

Other Implementation:

def myfunction2(x):
if (x¥2 == @):

result= x/2
else:

result= 2¥x
return{result)

Confidentiel

10

Implementation in R:

myfunction <-function(x)
1
test=x/2-round(x/2)
it (test==0) result=x/2
else result=2"x
result

D 8 H Confidentiel

11

	Algorithms
	from my own research
	1. Idea
	2. Outline of Algorithm
	3. implementation
	
	ToY Example
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11

